Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern

نویسندگان

  • M. G. Papoutsidakis
  • G. Chamilothoris
  • F. Dailami
  • N. Larsen
چکیده

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1 order TagakiSugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes. Keywords—Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy gain scheduling of PID controller for stiction compensation in pneumatic control valve

Inherent nonlinearities like, deadband, stiction and hysteresis in control valves degenerate plant performance. Valve stiction standouts as a more widely recognized reason for poor execution in control loops. Measurement of valve stiction is essential to maintain scheduling. For industrial scenarios, loss of execution due to nonlinearity in control valves is an imperative issue that should be t...

متن کامل

Robust loop shaping–fuzzy gain scheduling control of a servo-pneumatic system using particle swarm optimization approach

In this paper, a new technique called robust loop shaping–fuzzy gain scheduled control (RLS–FGS) is proposed to design an effective nonlinear controller for a long stroke pneumatic servo system. In our technique, a nonlinear dynamic model of a long stroke pneumatic servo plant is identified by the fuzzy identification method and is used as the plant for our design. The structure of local contro...

متن کامل

Position Control of a Pulse Width Modulated Pneumatic Systems: an Experimental Comparison

In this study, a new adaptive controller is proposed for position control of pneumatic systems. Difficulties associated with the mathematical model of the system in addition to the instability caused by Pulse Width Modulation (PWM) in the learning-based controllers using gradient descent, motivate the development of a new approach for PWM pneumatics. In this study, two modified Feedback Error L...

متن کامل

Stability Proof of Gain-Scheduling Controller for Skid-to-Turn Missile Using Kharitonov Theorem

Gain scheduling is one of the most popular nonlinear control design approaches which has been widely and successfully applied in fields ranging from aerospace to process control. Despite the wide application of gain scheduling controllers, there is a notable lack of analysis on the stability of these controllers. The most common application of these kinds of controllers is in the field of fligh...

متن کامل

Adaptive Fuzzy Dynamic Sliding Mode Control of Nonlinear Systems

Two phenomena can produce chattering: switching of input control signal and the large amplitude of this switching (switching gain). To remove the switching of input control signal, dynamic sliding mode control (DSMC) is used. In DSMC switching is removed due to the integrator which is placed before the plant. However, in DSMC the augmented system (system plus the integrator) is one dimension bi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005